Classification of metagenomic sequences: methods and challenges

نویسندگان

  • Sharmila S. Mande
  • Monzoorul Haque Mohammed
  • Tarini Shankar Ghosh
چکیده

Characterizing the taxonomic diversity of microbial communities is one of the primary objectives of metagenomic studies. Taxonomic analysis of microbial communities, a process referred to as binning, is challenging for the following reasons. Primarily, query sequences originating from the genomes of most microbes in an environmental sample lack taxonomically related sequences in existing reference databases. This absence of a taxonomic context makes binning a very challenging task. Limitations of current sequencing platforms, with respect to short read lengths and sequencing errors/artifacts, are also key factors that determine the overall binning efficiency. Furthermore, the sheer volume of metagenomic datasets also demands highly efficient algorithms that can operate within reasonable requirements of compute power. This review discusses the premise, methodologies, advantages, limitations and challenges of various methods available for binning of metagenomic datasets obtained using the shotgun sequencing approach. Various parameters as well as strategies used for evaluating binning efficiency are then reviewed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Taxonomic classification of metagenomic shotgun sequences with CARMA3

The vast majority of microbes are unculturable and thus cannot be sequenced by means of traditional methods. High-throughput sequencing techniques like 454 or Solexa-Illumina make it possible to explore those microbes by studying whole natural microbial communities and analysing their biological diversity as well as the underlying metabolic pathways. Over the past few years, different methods h...

متن کامل

MetaBinG: Using GPUs to Accelerate Metagenomic Sequence Classification

Metagenomic sequence classification is a procedure to assign sequences to their source genomes. It is one of the important steps for metagenomic sequence data analysis. Although many methods exist, classification of high-throughput metagenomic sequence data in a limited time is still a challenge. We present here an ultra-fast metagenomic sequence classification system (MetaBinG) using graphic p...

متن کامل

A Metagenomic Analysis of Lung Microbiome in Chemically Injured and Healthy Individuals

Background and Aim: The role of the lung microbiome in respiratory complications associated with chemicals such as sulfur mustard or chlorine gas has yet to be determined. The aim of this study was to compare the structure and composition of the lung microbiome in chemically injured and healthy individuals in order to understand the relation between the population of the lung microbiota and res...

متن کامل

Challenges and opportunities in understanding microbial communities with metagenome assembly (accompanied by IPython Notebook tutorial)

Metagenomic investigations hold great promise for informing the genetics, physiology, and ecology of environmental microorganisms. Current challenges for metagenomic analysis are related to our ability to connect the dots between sequencing reads, their population of origin, and their encoding functions. Assembly-based methods reduce dataset size by extending overlapping reads into larger conti...

متن کامل

Ultrafast clustering algorithms for metagenomic sequence analysis

The rapid advances of high-throughput sequencing technologies dramatically prompted metagenomic studies of microbial communities that exist at various environments. Fundamental questions in metagenomics include the identities, composition and dynamics of microbial populations and their functions and interactions. However, the massive quantity and the comprehensive complexity of these sequence d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Briefings in bioinformatics

دوره 13 6  شماره 

صفحات  -

تاریخ انتشار 2012